Correlation of secondary organic aerosol with odd-oxygen in megacity outflow

Scott Herndon, Timothy Onasch, Ezra Wood, W. Berk Knighton, Miguel Zavala, Claudio Mazzoleni, Dwight Thornhill, John Jayne, Manjula Canagaratna, Jesse Kroll, Robert Seila, William Lonneman, Benjamin de Foy, Jerome Fast, Ingrid Ulbrich, Peter DeCarlo, Allison Aiken, Jose Jimenez, Dubey Manvendra, Doug Worsnop, Charles Kolb and Luisa Molina

Acknowledgements: Joost de Gouw, Dan Welsh-Bon, Rainer Volkamer, Rafael Ramos, Armando Retama, Gustavo Sosa, Ana Patricia

many MILAGRO Platforms - this analysis based on T0, PTP and Santa Ana datasets - DE-FGO2-05ER63982

Mobile Laboratory housed various instruments for gas-phase and particulate characterization. Most were *online* sampling.

Department of Energy Atmospheric Sciences Program Science Team Meeting - February 2008

Topography of the Mexico City Metropolitan Area.

The site labeled "PTP" is an elevated location within the defined city limits. $\it Like\ T-1/2$

Site Description Pico de Tres Padres (PTP)

Anthropogenic Organic Aerosol

Secondary organic aerosol has been observed to increase rapidly in urban outflow relative to CO

de Gouw, et al. 2005; Kleinman et al. 2006

Observed rates of SOA production in urban atmospheres are greater than current photochemical models predict

Volkamer et al. 2006

Ozone and SOA production in urban air

O₃ formation:

VOC + OH
$$\rightarrow$$
 RO₂
RO₂ + NO \rightarrow RO + NO₂
RO + O₂ \rightarrow HO₂ + R'O
HO₂ + NO \rightarrow HO + NO₂
NO₂ + hv \rightarrow NO + O
O + O₂ + M \rightarrow O₃ + M

SOA formation:

VOC, OH,
$$NO_x \Rightarrow \Rightarrow SOA$$

Condensation of low-volatility organic species Pankow and Seinfeld, 2001 Chung and Seinfeld, 2002

Role of Aromatics Odum et al. 1997, Ng et al. 2007

Same ingredients... SOA and O₃ ought to be correlated

Time Series of AMS and Gas-Phase Data at PTP

OOA vs Ox

In earliest processing of the urban plume ~ 1-10 hours, increases in OOA relative to Ox taper slightly

G1 Data - Preliminary OOA vs Ox

Springston, Jayne & Wood

Slope = 170 ug/m 3 / ppm

Slope = 150 ug/m 3 / ppm

Slopes (AMS loadings) are normalized to PTP pressure/temp

Final Notes

in urban outflow:

OOA to Ox ratio is proxy for $p(SOA) / p(O_3)$

*Applicability to Model Anthropogenic Aerosol - Jerome Fast

T1 to T0 inter-comparison
PTR and VOC measurements

Black Carbon to CO (variable)

Dubey Manvendra, Claudio Mazzoleni

Emission Ratios/Emission Inventory - Zavala

GC-FID Chromatograms for two time periods on 3/11 at PTP.

• The black trace is the chromatogram for the early morning canister sample and the grey trace is more photochemically processed air. The black less aged chromatogram has been offset 5 units for visual clarity. The two chromatograms have been normalized for dilution by equating the area of the benzene signal. Note that Toluene is off-scale for both chromatograms with the numbers 82 and 103 indicating the peak height in units of relative FID signal.

Diurnal change in VOC Mix at PTP

The potentially high yield n-alkanes, relative to aromatics taper in the afternoon

OOA/Ox

OOA/Ox decrease with photochemical processing

- 1. Fewer low volatility precursor
- 2. 2^{nd} generation oxidation increases $p(O_3)$ relative to p(SOA)

$O_X/NOx \sim [OH] \times \Delta t_{photo}$

No Ox/NOx plateau implies PTP is photochemically active

 $\Delta t[OH]$ more to come...

Photochemistry - VOC Ratios

de Gouw, J. Roberts, McKeen, Liu

HOA correlates with CO

EC carbon measurements correlate with HOA Onasch & Mazzoleni

And on other days at PTP March 9 - 19 (PTP all) March 11 - 12 15 00A (µg/m³) 50 100 150 200 0 $O_x = O_3 + NO_2 (ppb)$

Figure 3.

Correlation of OOA with O, for 9 days at the PTP site. The data from March 11 and 12 are shown in blue.

Further discussion of Organic Matter

Zhang et al., 2005, 2007; Lanz et al., 2006, Ulbrich et al.